# The Metric System, the United States of America, and Scientific Literacy

Here’s a quick quiz: I weigh 71 kilograms, and am about 1.82 meters tall.

a.) Do you have an idea of about how much I weigh and how tall I am?

b.) Am I taller or shorter than you, and do I weigh more or less than you?

If you don’t live in the United States of America, Liberia, or Burma, you most likely can answer both of these questions pretty much without any hesitation. If you do live in one of those three countries, then without the help of a calculator, or a quick search on Google, chances are you would have to think a bit about question “a,” and would struggle with question “b.”

The issue.

There is a huge disconnect between the science that we do (SI units, commonly interchanged with the Metric System) and how we live our daily lives, (U.S. Customary Units, not Imperial Units). Is it possible that people are turned off by science and technology because they don’t understand the metric system? And is it possible that this makes us less scientifically literate as a country?

One of my favorite comic strips, Fox Trot, by Bill Amend, consistently brings up math and science humor.

I think the answer is most definitely. While U.S. scientists are used to converting units, an ideal scientifically literate society includes artists, public servants, business owners, and waitresses — people who don’t have to use the metric system on a regular basis — translating units is one more barrier to understanding the math and science that is used in research.

The only examples that come to my mind where the metric system is in common use in the United States are:

• Miles-per-hour/Kilometers-per-hour speedometers in our vehicles
• A 750ml bottle of wine
• A 1-liter (1,000ml) Nalgene bottle
• The 100 meter dash
• 2 liter soda bottles
• 5k and 10k runs/races
• Most food nutrition labels (How many people actually read those?)

Yet all science is done in the language of SI units. If the goal is for the non-scientific public to be able to engage regularly and enthusiastically with science, wouldn’t it make sense for scientists and non-scientists to speak the same language?

To really make SI units and the metric system commonplace in the United States requires more than a little effort on our part. Imagine how many local, state, and federal authorities would be required to change millions of road signs, food packaging, gas station signs and sports fields. And on top of that, does the general public want to make the switch?

Some selected history.

The reasons that hold us back from converting range from stubbornness to cost (a 1996 concern in the Journal of Professional Issues in Engineering and Education Practice). In 1975, thanks to President Gerald Ford and Congress, the Metric Conversion Act was passed which would have led to the metric system being the preferred system of weights and measures in the United States. This act created the United States Metric Board, which was abolished in 1982, by President Reagan.

From The United States and the Metric System, NIST LC 1136: “The efforts of the Metric Board were largely ignored by the American public, and, in 1981, the Board reported to Congress that it lacked the clear Congressional mandate necessary to bring about national conversion. Due to this apparent ineffectiveness, and in an effort [by President Reagan] to reduce Federal spending, the Metric Board was disestablished in the fall of 1982.”

Some readers may be familiar with the “We the People” petition that the White House website hosts. As of this moment, over 35,000 people have digitally signed a petition to make the metric system the official system of weights and measures of the United States. Possibly another act from the federal government is needed to really get things moving again.

A more detailed history can be read here.

Solutions.

Thankfully, the metric system has been taught in schools and this should continue. From my experience, however, it was only as a way to solve given problems. Physics was taught in the metric system, as was chemistry. But when I got to my algebra class, and even in shop class, (a prime opportunity to “feel” what 50 centimeters was), we measured 20 inches (not the same, by the way). I would recommend that all rulers in school should all be inches and centimeters, though I must admit I attended a science teacher workshop and we were given 12 foot tape measurers to take back home.

Should we discourage these words? Image from another blog post about the metric system.

When I learned Spanish, my most effective learning was not being told that café meant coffee — I was given a cup of café and told “este es café,” or “this is coffee.” We shouldn’t miss these tangible opportunities to become friendly with the system.

The next time you go to your doctor’s office and they take you height and weight, ask your doctor for the numbers in metric, and you will have that personal connection to some part of the metric system. Do you check the weather online or use online mapping? Change the units to Celsius and meters. These are a few simple changes people can make to become more familiar with the system.

You don’t have to look long to find bloggers who are asking why the United States has not yet converted to the metric system. One I found particularly interesting is a blog created in 2012 which focuses on documenting the creation of a documentary about how the United States was going to convert to the metric system, but never did. The blog is appropriately named “More than a mile behind.” Keep your eyes and ears open for this one.

The world and us.

I have always believed that no matter what language you speak, science and math are the same in any language. If we’re not speaking the same scientific language as scientists from other countries (many of whom have made the effort to learn English), we might be isolating ourselves scientifically. So with that, I’ll leave you with a clip from The Simpsons.

P.S. Even rocket scientists mess up.

This entry was posted in Uncategorized and tagged , , , , . Bookmark the permalink.